An Unsupervised Model for Statistically Determining Coordinate Phrase Attachment
نویسنده
چکیده
This paper examines the use of an unsupervised statistical model for determining the attachment of ambiguous coordinate phrases (CP) of the form n1 p n2 cc n3. The model presented here is based on [AR98], an unsupervised model for determining prepositional phrase attachment. After training on unannotated 1988 Wall Street Journal text, the model performs at 72% accuracy on a development set from sections 14 through 19 of the WSJ TreeBank [MSM93].
منابع مشابه
Statistical Models for Unsupervised Prepositional Phrase Attachment
We present several unsupervised statistical models for the prepositional phrase attachment task that approach the accuracy of the best supervised methods for this task. Our unsupervised approach uses a heuristic based on attachment proximity and trains h'om raw text that is annotated with only part-oi;speech tags and morphologicM base forms, as opposed to attachment information. It is therefore...
متن کاملAn Unsupervised Approach to Prepositional Phrase Attachment using Contextually Similar Words
Prepositional phrase attachment is a common source of ambiguity in natural language processing. We present an unsupervised corpus-based approach to prepositional phrase attachment that achieves similar performance to supervised methods. Unlike previous unsupervised approaches in which training data is obtained by heuristic extraction of unambiguous examples from a corpus, we use an iterative pr...
متن کاملThe Effect of Corpus Size in Combining Supervised and Unsupervised Training for Disambiguation
We investigate the effect of corpus size in combining supervised and unsupervised learning for two types of attachment decisions: relative clause attachment and prepositional phrase attachment. The supervised component is Collins’ parser, trained on the Wall Street Journal. The unsupervised component gathers lexical statistics from an unannotated corpus of newswire text. We find that the combin...
متن کاملAutomatic Semantic Role Labeling using Selectional Preferences with Very Large Corpora
OF PhD THESIS Automatic Semantic Role Labeling using Selectional Preferences with Very Large Corpora Determinación Automática de Roles Semánticos usando Preferencias de Selección sobre Corpus muy Grandes Graduated: Hiram Calvo Center for Research in Computing (CIC) National Polytechnic Institute (IPN) Mexico City, Mexico, 07738 [email protected] [email protected] Graduated on June 19th, 2006...
متن کاملStatistical Models for Unsupervised Prepositional Phrase Attachement
We present several unsupervised statistical models for the prepositional phrase attachment task that approach the accuracy of the best supervised methods for this task. Our unsupervised approach uses a heuristic based on attachment proximity and trains from raw text that is annotated with only part-of-speech tags and morphological base forms, as opposed to attachment information. It is therefor...
متن کامل